If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+85t-50
We move all terms to the left:
0-(-16t^2+85t-50)=0
We add all the numbers together, and all the variables
-(-16t^2+85t-50)=0
We get rid of parentheses
16t^2-85t+50=0
a = 16; b = -85; c = +50;
Δ = b2-4ac
Δ = -852-4·16·50
Δ = 4025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4025}=\sqrt{25*161}=\sqrt{25}*\sqrt{161}=5\sqrt{161}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-85)-5\sqrt{161}}{2*16}=\frac{85-5\sqrt{161}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-85)+5\sqrt{161}}{2*16}=\frac{85+5\sqrt{161}}{32} $
| 6-4n+2n=10 | | 8x^2=144+x^2 | | 10x-10=4(x+1)=6x-14 | | 6x–51=x–6 | | 10x–10=4(x+1)+6x-14 | | (12x-15)(12x-21)(x)=945 | | 3x+13+5x-25=180 | | 1=3g–24 | | -1+-4s=8 | | 4x9=7x+31 | | 13x=−14x-10 | | 100=x+0.18x | | 20=b–4+7b | | 3(5-k)=-51-3k | | 5(4g+2)= | | x^+x^=88 | | 1x-5-2x=14+1x-3 | | |9-2x|=3 | | b+13=24 | | 2v=4v-54 | | u+58=7u-98 | | 3x-(2)=20 | | 3y-78=y-18 | | 7-c=4 | | -16x^2-96x-144=0 | | (2x+2)^-(2x)^=92 | | 2q=15 | | 7t=-19 | | 4t+2/5=1.6 | | 4s=s+66 | | 11x-16=15x | | |-6x+3|=27 |